Printed Page:- Subject Code:- BCSBS0203Z			
Roll. No:			
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER	NOIDA		
(An Autonomous Institute Affiliated to AKTU, Lucknow) B.Tech			
SEM: II - THEORY EXAMINATION (20 20)			
Subject: Data Structures & Algorithms			
· ·	Marks: 100		
General Instructions:			
IMP: Verify that you have received the question paper with the correct course, code, by			
1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Questions (MCQ's) & Subjective type questions.	Choice		
2. Maximum marks for each question are indicated on right -hand side of each question	n		
3. Illustrate your answers with neat sketches wherever necessary.			
4. Assume suitable data if necessary.			
5. Preferably, write the answers in sequential order.			
6. No sheet should be left blank. Any written material after a blank sheet will not be			
evaluated/checked.			
SECTION A	20		
SECTION-A	20		
1. Attempt all parts:-			
1-a. For many problems such as sorting, there are many choices of algorithms to some of which are extremely (CO1,K2)	use, 1		
(a) Space efficient			
(b) Time efficient			
(c) Both (a) and (b)			
(d) None of the above			
1-b. To verify whether a function grows faster or slower than the other function,	we 1		
have some asymptotic or mathematical notations, which is(CO1,K2)			
(a) Big Omega Ω (f)			
(b) Big Theta θ (f)			
(c) Big Oh O (f)			
(d) All of the above			
1-c. Which of these best describes an array? (CO2,K1)	1		
(a) A data structure that shows a hierarchical behavior			
(b) Container of objects of similar types			
(c) Container of objects of mixed types			
• • • • • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • • •	1		

	(b)	Push	
	(c)	Evaluation	
	(d)	Pop	
1-e.	A	Binary Tree can have. (CO3,K1)	1
	(a)	Can have 2 children	
	(b)	Can have 1 children	
	(c)	Can have 0 children	
	(d)	All of the above	
1-f.	In	which traversal root node in visited at the last. (CO3,K1)	1
	(a)	Post-order traversal	
	(b)	Pre-order traversal	
	(c)	In-order traversal	
	(d)	None	
1-g.	W	Thich of the following sort method is stable? (CO4,K1)	1
	(a)	Insertion Sort	
	(b)	Binary Sort	
	(c)	Shell Sort	
	(d)	Heap Sort	
1-h.	T	he goal of hashing is to produce a search that takes: (CO4,K1)	1
	(a)	O(1) time	
	(b)	O(n2) time	
	(c)	O(log n) time	
	(d)	O(nlog n) time	
1-i.	W	which of the following is true about graph. (CO5,K1)	1
	(a)	Linear Data Structure	
	(b)	Non-Linear Data Structure	
	(c)	Both a annd b	
	(d)	None of the above	
1-j.	In	sequential file organization record can be inserted only a(CO5,K1)	1
	(a)	Random position	
	(b)	Beginning	
	(c)	End of the file	
	(d)	None of the above	
2. Atte	empt a	all parts:-	
2.a.	D	efine space complexity of an algorithm (CO1,K1)	2
2.b.	W	rite need of prefix and postfix expression. (CO2,K2)	2
2.c.		ive the application of Graph. (CO3,K2)	2
	_	the interpretation of Graphic (GGG,122)	

2.a.	write short note on perfect hash function. (CO4,K1)	2
2.e.	Write short note on file organization. (CO5,K1)	2
SECTIO	<u> </u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Differentiate iterative and recursive algorithm. (CO1,K2)	6
3-b.	Differentiate linear and non-linear data structure. (CO1,K2)	6
3-c.	Convert following infix expression into postfix expression. (CO2,K2) 1) A - B - D * E / F + B * C 2) (A-B) * C + (C * D) - (F+G)	6
3-d.	Write an algorithm to insert and delete an element from a linear Queue. (CO2,K3)	6
3.e.	Explain in-order, pre-order and post-order traversal with example (CO3,k2)	6
3.f.	Write a program to implement sequential search. (CO4,K3)	6
3.g.	Write short note on file structure and also explain sequential file structure in detail. (CO5,k2)	6
SECTIO	<u> </u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Define algorithm and explain features of an algorithm with example. (CO1,K2)	10
4-b.	Write short note on following asymptotic notation (CO1,K2): 1) Big-Oh. 2) Big-Theta. 3) Big-Omega.	10
5. Answe	er any one of the following:-	
5-a.	Write a short note on 2-D array and also explain memory management of 2-D array with their memory access formula. (CO2,K2)	10
5-b.	Define doubly link list and write a program to implement doubly link list. (CO2,K3)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Define AVL tree. Explain the term balance factor in AVL tree? Describe various rotations performed on AVL tree with the help of neat diagram. (CO3,K2)	10
6-b.	Draw the B-tree of order 3 created by inserting the following data arriving in sequence - 92 24 6 7 11 8 22 4 5 16 19 20 78. (CO3,K3)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Define is merge sort? Explain the procedure of merge sort with example. (CO4,K2)	10
7-b.	Explain different types of hashing techniques. (CO4,K2)	10
8. Answe	er any <u>one</u> of the following:-	
8-a.	Explain Prim's algorithm of finding minimum spanning tree with an example. (CO5,K2)	10
8-b.	Define graph traversing and also explain DFS with suitable example. (CO5.K2)	10